

Plant and Soil 235: 253-257, 2001.

©Authors: H.H. Janzen and B.H. Ellert. For the Department of Agriculture and Agri-Food, Government of Canada. Minister of 253 Public Works and Government Services Canada 2001. Printed in the Netherlands.

A pulse-labelling method to generate ¹³C- enriched plant materials

Søren Bromand¹, Joann K. Whalen², H. Henry Janzen^{3,4}, Jan K. Schjoerring¹ & B.H. Ellert³ ¹Royal Veterinary and Agricultural University, Denmark. ²Macdonald Campus of McGill University, Québec, Canada. ³Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4B1. ⁴Author for correspondence^{*}

Received 25 June 2001. Accepted in revised form 10 July 2001

Key words: ¹³C, foliar, leaves, pulse labelling, roots, stable isotopes, stems

Abstract

Plant materials labelled with ¹³C can be used to trace litter decomposition and root carbon flow, but only if the isotope is uniformly distributed in the plant. We postulated that if ¹³CO₂ were applied at regular intervals, in direct proportion to the rate of photosynthesis, then the abundance of ¹³C would be uniform among plant parts. To test this hypothesis, wheat plants were grown in the greenhouse, and exposed weekly to ¹³CO₂ for six hours in a closed chamber. A constant dose of ¹³CO₂ (about 33 atom%) was injected whenever CO₂ concentration fell below a prescribed limit, so that ¹³CO₂ was added in proportion to photosynthetic rate. Wheat exposed for 13 weeks (starting 11 days after seeding) had reasonably consistent ¹³C abundance among plant parts: grain = 3.41, chaff = 3.41, stem = 3.65, and root = 3.50 atom%. The 'leaf' fraction had slightly higher abundance (3.99 atom%), perhaps because recently-fixed ¹³C was not translocated from senescing tissue. Exposing plants only during early stages of the growing season increased differences among plant parts. The approach offers a practical way to label plants with ¹³C.

Introduction

Storing more carbon in soils (carbon sequestration) has been proposed as one way of mitigating atmospheric CO_2 increases. To develop methods of increasing and retaining soil carbon, we need to understand better the fate of plant litter, the source of new soil carbon (C).

Isotopic techniques have been widely used to study C cycling in soil-plant systems (Meharg, 1994; Warembourg and Kummerow, 1991). Until recently, such studies usually used ¹⁴C because of availability and sensitivity of analysis. Recently, advances in the analysis of stable isotopes have prompted interest in the use of ¹³C as a tracer, and methods have been developed for labelling plants with ¹³CO₂ (Berg et al., 1991; Gaillard et al., 1999; Schmidt and Scrimgeour, 2001; Svejcar et al., 1990; Thompson, 1996). The main advantage of ¹³C over ¹⁴C is that it is not radioactive, so that labelling chambers do not need extensive precautions against leaks and analysis can be conducted routinely and safely.

Plant residues must be uniformly labelled to obtain quantitative measurements of C dynamics during decomposition. Homogeneous labelling of plants with C isotopes has been accomplished through continuous exposure of plants to an atmosphere with relatively constant CO₂ concentrations and ¹⁴C activity or ¹³C abundance (Kouchi and Yoneyama, 1984; Martin et al., 1992). But these systems require complex control systems to maintain constant environmental conditions (CO₂ concentration, ¹⁴C activity or ¹³C abundance, temperature and soil moisture). As a result, continuous labelling systems are expensive and not always accessible.

Repeated pulse-labelling systems, in which plants are exposed periodically to labelled CO_2 for short periods of time, circumvent many of the logistical constraints of continuous labelling systems. Sophisticated automated control of atmospheric conditions and soil moisture is not required because the chambers are sealed for a short duration (e.g. several hours).

^{*} FAX No: 403-382-3156. E-mail: janzen@em.agr.ca

With pulse-labelling systems, however, it may be more difficult to achieve homogeneous labelling of plant components (e.g. Berg et al., 1991), because the ratio of ${}^{13}C/{}^{12}C$ (or ${}^{14}C/{}^{12}C$) in assimilated C may vary with time.

We postulate that the uniformity of 13 C enrichment can be improved by adjusting the amount of label applied for the change in photosynthetic rate over the growing season. If the amount of label applied is proportional to the rate of photosynthesis at each labelling period, and the pulses occur at regular intervals over the entire growing season, then the label should be uniformly distributed in the plant. A pulse-labelling system, therefore, which monitors rate of net photosynthesis and applies labelled CO₂ accordingly should allow reasonably uniform labelling of the plant without the complexity of continuous labelling techniques.

Our objective was to test this hypothesis by evaluating the distribution of ${}^{13}C$ in wheat plants regularly exposed to ${}^{13}CO_2$, in amounts proportional to the rate of photosynthesis.

Materials and methods

Plant culture

Wheat (*Triticum aestivum* L. cv. 'Katepwa') was seeded in pots (20-cm tall \times 10-cm diameter) containing 1.8 kg (oven-dry basis) of sieved (< 2 mm) soil obtained from the A horizon of a loamy sand soil (84% sand, 3% clay) with C content of 8 g C kg⁻¹. Soils were moistened and fertilized with N, P, K, S, and selected micronutrients prior to seeding. After establishment, wheat was thinned to three plants per pot, and pots were placed in a greenhouse and watered regularly to prevent moisture stress. Pots were fitted with lids containing holes for watering and aeration, and lids were sealed around wheat stems with medical grade silicone rubber (Dow Corning, Midland, MI, USA).

The plants were fertilized with ¹⁵N-enriched urea (10.1 atom%) to generate residues labelled with both ¹³C and ¹⁵N. The enriched urea was applied prior to seeding (100 mg N kg⁻¹ soil), and at 15 (100 mg N kg⁻¹ soil), 44 (50 mg N kg⁻¹ soil), 51 (50 mg N kg⁻¹ soil), and 62 (25 mg N kg⁻¹ soil) days after seeding.

Experimental treatments

The wheat plants were exposed to ¹³CO₂ according to

one of 3 treatments – 'full' exposure: Weekly pulses for 13 weeks starting 11 days after seeding; 'early' exposure: Weekly pulses for the first 5 weeks of the growing season; and 'late' exposure: Weekly pulses for the last 8 weeks. Each treatment was replicated four times so that eight pots were treated every week (4 'full' and 4 'early' or 4 'late'). In addition, there were five control pots not exposed to ${}^{13}CO_2$; two were grown among the exposed plants in the greenhouse, three were grown on another bench to avoid possible contamination with ${}^{13}C$.

^{13}C labelling

Once a week, the designated wheat plants were placed inside a closed acrylic chamber (60-cm deep \times 120cm wide \times 104-cm high) in a controlled climate growth cabinet, with temperature set at 16 °C. Closed plastic containers with ice were also placed inside the chamber to prevent heating and to condense excess humidity. During labelling, holes in pot lids were closed to avoid release of respired soil C into the chamber air.

The CO₂ concentration in the sealed chamber was monitored continuously using an infrared gas analyzer (EGM-1; Environmental Gas Monitor, PP Systems, Hitchin, UK) and average values were recorded every minute. Because of the shift in absorption spectrum of ¹³CO₂, relative to that of ¹²CO₂, infrared gas analyzers detect only a small proportion of the ¹³CO₂ in air (Mordacq et al., 1986). Consequently, our measurements of CO₂ concentration underestimated the true concentration when CO₂ was highly enriched with 13 C; in our study (~33 atom% 13 CO₂), we estimated that the analyzer reading was about 72% of the actual concentration. As long as the ¹³C abundance of the CO_2 is consistent, the apparent CO_2 reading is proportional to the actual concentration, though the latter can be only roughly estimated.

 13 C-labelled CO₂ was generated by injecting Na₂ 13 CO₃ solution through a septum into a flask containing 1 M H₂SO₄. The CO₂ evolved was swept into the sealed chamber through a closed loop of tubing with a small pump, and a fan circulated the CO₂ inside the chamber.

The intended enrichment of CO_2 in the chamber was 33 atom% ¹³C. To compensate for the diluting effect of unlabelled CO_2 initially in the air, the first injection every week was with ¹³CO₂ enriched to about 97%. For this first injection, CO_2 concentration was allowed to fall to 327 ppmv (by photosynthesis or, where photosynthesis was too slow, by suspending a

Figure 1. Apparent CO₂ concentration during one labeling period (fourth pulse) showing the initial decline upon closing of the chamber, the initial injection of highly-enriched ¹³CO₂ (~97 atom%), and subsequent injections of ~33 atom% ¹³CO₂. After the initial injection, the apparent CO₂ concentration underestimates the actual concentration because of incomplete detection of ¹³CO₂.

soda lime trap into the chamber). Once concentration had fallen to 327 ppmv, 4.8 mmoles of highly-enriched Na₂CO₃ (~97 atom%) was injected into the generation flask, yielding an estimated ¹³C abundance in chamber air CO₂ close to the intended 33 atom%. All injections thereafter were made using Na₂¹³CO₃ with an abundance of about 33%, prepared by diluting various highly enriched sources (close to 100%) with reagent grade Na₂CO₃. (Had we used 33 atom% ¹³CO₂ for the first injection, the ¹³C abundance would have been much lower initially, then gradually increased toward 33 atom% with successive injections.)

After the first injection, 5 mL of Na₂CO₃ solution (33 atom%, 4.2 mmol C) was added whenever the *apparent* CO₂ concentration fell to about 250 ppmv (corresponding to an actual CO₂ concentration of about 350 ppmv) (Figure 1). In this way, the frequency of injections increased proportionally with the rate of CO₂ removal and, by definition, ¹³CO₂ addition was therefore always proportional to photosynthesis, regardless of plant growth stage (assuming all CO₂ removal was by photosynthesis). In later growth stages, plant height exceeded the chamber height so that plants touched the upper surface during labelling. The chamber was opened after 6 h and wheat plants were returned to the greenhouse.

During the eighth pulse, a power outage briefly interrupted the labelling. The chamber was opened to allow escape of ${}^{13}CO_2$, then re-sealed, and the labelling was continued after an initial injection of highly-enriched ${}^{13}CO_2$ (about 97 atom%).

Harvest and analyses

During the experiment, leaves were removed and dried as they senesced. At maturity (111 d after seeding), wheat plants were harvested and separated into grain, chaff, stem, leaf (including the leaf sheath) and root fractions. A sub-sample of soil was also collected for analysis. Plant parts were oven-dried (70C), ground and analyzed for total C, N, atom% ¹³C and atom% ¹⁵N using a Carlo-Erba C and N analyser (Milan, Italy) coupled with an Optima mass spectrometer (Micromass, Manchester, UK). Soil samples were air-dried and similarly analyzed.

Aliquots of injected Na₂¹³CO₃ solutions were also analyzed for ¹³C abundance, after dilution of the ¹³C with reagent grade Na₂CO₃, to ensure they were close to the target enrichments. All atom% values for the solutions and resulting atmospheric CO₂ (e.g. 33 atom%) are only approximate.

'Root' samples are often contaminated with adhering soil residues. Because the density of soil is so much higher than that of dry plant tissue, even contamination that appears slight can affect dry matter yield, elemental concentration, and atomic abundance data. We corrected for this contamination as follows:

$$f = M_r/M_t = (C_t - C_s)/(C_r - C_s)$$

Where f is the fraction of sample mass from root tissue; M_r , M_t is the mass of root tissue and total 'root' sample, respectively (g); C_s , C_t , C_r is the C concentration in soil, total 'root' sample, and pure root tissue, respectively. C_r (458 mg C g⁻¹) was measured on a few carefully-cleaned root sub-samples and was assumed to be constant for all treatments. Then:

$$M_r = f^*M_t$$

To correct ¹³C abundance values:

$$A_r = \frac{12A_tC_t/(12+A_t) - 12A_sC_s(1-f)/(12+A_s)}{C_rf + A_sC_s(1-f)/(12+A_s) - A_tC_t/(12+A_t)}$$

Where A_r , A_t , A_s is the abundance of ${}^{13}C$ in root, total 'root' sample, and soil, respectively (atom%/100) (If ${}^{13}C$ enrichment is small, then the atomic mass of C can be assumed to be constant and the equation is much simpler.)

Results and discussion

Dry matter yield

Wheat growth was only slightly affected by ¹³C treat-

Figure 2. Rate of CO₂ assimilation over time as estimated in two ways: (a) from the amount of C added to maintain CO₂ during the six hour exposure period, and (b) from the average rate of CO₂ decline as determined by the infrared analysis of CO₂ between injections. The latter was corrected for partial detection of 13 CO₂ by the analyzer. Estimates from both methods rely on simplifying assumptions and are only approximate.

ment. Mean dry matter yields (excluding roots) ranged from 32.8 to 33.9 g pot⁻¹ for the three treatments exposed to ¹³CO₂ compared to 34.5 g pot⁻¹ for controls grown among the treated plants and 34.3 g pot⁻¹ for plants grown on another bench (data not shown). Differences among the three exposed treatments were not significant (*P*=0.05) for total above-ground yield or for yield of any plant fractions, except for leaves which had highest yield in the 'late' treatment (9.3 g pot⁻¹) and lowest in the 'full' treatment (8.5 g pot⁻¹).

Pattern of ¹³C assimilation

The rate of CO₂ assimilation was estimated in two ways: (a) from the average rate at which CO₂ concentration declined between injections (corrected for partial detection of 13 CO₂ by the analyzer), and (b) from the amount of Na₂CO₃ injected during the exposure (corrected for incomplete absorption of the last injection). Both calculations showed similar patterns: minimal absorption during the first week, increasing to a maximum in the ninth or tenth week, then falling abruptly (Figure 2). The two sets of estimates were very close, though this agreement may be partly fortuitous because both methods relied on rough approximations (e.g. volume of chamber, assumption of Ideal Gas law, estimate of chamber temperature and pressure, recovery of 13 CO₂ by the infrared analyzer).

Figure 3. ¹³C enrichment of wheat heads, leaves, stems and roots receiving early, late or full exposure to ¹³CO₂ labelling. Error bars represent one standard deviation (n=4) above the mean. Mean ¹³C abundance in the control plants grown apart from the enriched plants (n=3) was as follows: roots 1.0865 atom%, stem 1.0792 atom%, leaf 1.0792 atom%, chaff 1.0820 atom%, and grain 1.0815 atom%.

¹³C abundance in plant parts

Wheat receiving the 'full' treatment had similar ${}^{13}C$ abundance in the root, stem, chaff and grain tissues, with atom% values ranging from 3.41 to 3.65 (Figure 3). Enrichment in the 'leaf' fraction was somewhat higher, perhaps because senescing leaves absorbed but did not effectively translocate ${}^{13}C$.

In plants exposed to ¹³C only during early growth stages, the roots and stems had appreciably higher enrichment than other fractions, reflecting the disproportionate assimilation of C into vegetative growth (Gregory et al., 1997; Swinnen et al., 1994). The chaff, grain, and stem tissues had ¹³C abundance not much higher than that in the control plants, indicating limited translocation into these plant parts of C absorbed early.

Distribution of ¹³C in plants exposed only during 'late' growing stages was the inverse of that in the 'early' treatment. Highest enrichments were observed in the stem, chaff and grain fractions; lowest in the roots and leaves. Because much of the ¹³C assimilation occurred during the exposure of the 'late' treatment (Figure 2), the ¹³C abundance in this treatment was much higher than that in the 'early' treatment.

Other labelling trials in our laboratory, based on the approach outlined here, have furnished similar results, though the higher enrichment of the 'leaf' fraction was not always observed.

Applications of the labelling technique

The pulse-labelling technique furnished plant material sufficiently enriched with ¹³C (and ¹⁵N) for decomposition studies. For example, if 2 g of residue (3.5 atom% ¹³C) were applied to 1 kg of soil with a C concentration of 20 g C kg⁻¹, then the average enrichment of the soil C pool after 90% of the residue had decomposed would still be about 0.011 atom% above background, a difference easily detected by mass spectrometry. Because the leaves had slightly elevated enrichment, relative to other fractions, some caution in the use of this fraction may be advisable.

The labelling method yielded roots with 13 C abundance similar to that in above-ground plant parts, making it possible to estimate rhizodeposition of C. In the 'full' treatment of our study, the soil had an average 13 C abundance of 1.2358 atom%, compared to that in the control soil of 1.0886 atom% (mean of three pots grown on separate greenhouse bench). If the 13 C abundance of the deposited C was the same as that of the root (3.5009 atom%), then about 6% of the C in the soil was derived from the roots. This amounts to about 0.8 g C, equivalent to about 5% of the total plant C at harvest (including plant-derived C in soil). This calculation is approximate, but it illustrates the potential use of the pulse-labelling technique for measuring C deposition.

The approach has a number of advantages over some other labelling methods. The design is simple, and the equipment required is less costly than equipment used for continuous labelling chambers. There is no radiation risk associated with labelling plants with ¹³C, so pulse-labelling can be conducted routinely in conventional laboratories without producing hazardous waste. The method could easily be made more efficient and less labor-intensive by using an automated injection system controlled by the gas analyser. Increasing the volume of the chamber per plant would reduce frequency of injection required (the rate of CO2 drawdown would be slowed) and would accommodate taller plants. If required, the N in the residue can also be easily labelled by fertilizing with ¹⁵N, as in our experiment.

The pulse-labelling technique presented here may have useful application in C cycling studies. Until it has been more widely evaluated, however, some analyses may be required for each set of residues produced to ensure sufficient homogeneity of the plant material for its specific application. Our analysis demonstrates reasonable homogeneity of ¹³C among plant parts, but does not yet confirm homogeneity among different C fractions within plant parts (e.g. C in cellulose vs. soluble C). Where such homogeneity is essential, it could be established by 13 C analysis after fractionation.

Acknowledgements

We thank Yvonne Bruinsma for her diligence in growing the plants, injecting ¹³CO₂, and preparing samples for analysis. Clarence Gilbertson analysed the reagents and samples for ¹³C and ¹⁵N abundance. An earlier phase of this research was conducted by Søren Bromand as part of his M.Sc. thesis.

References

- Berg J D, Hendrix P F, Chang W X and Dillard A L 1991 A labelling chamber for ¹³C enrichment of plant tissue for decomposition studies. Agric. Ecosyst. Environ. 34, 421–425.
- Gaillard V, Chenu C, Recous S and Richard G 1999 Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil. Eur. J. Soil Sci. 50; 567–578.
- Gregory P J, Palta J A and Batts G R 1997 Root systems and root:mass ratio – carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187, 221–228.
- Kouchi H and Yoneyama T 1984 Dynamics of carbon photosynthetically assimilated in nodulated soyabean plants under steadystate conditions. 1. Development and application of ¹³CO₂ assimilation system at a constant ¹³C abundance. Ann. Bot. 53, 875–882.
- Martin J K, Adey R F, Sykes B J and Thomson J Mc 1992 The measurement of carbon flow though the rhizosphere of mature cereal crops using a controlled environment chamber. CSIRO Division of Soils Divisional Report No. 119. Australia. 12 p.
- Meharg A A 1994 A critical review of labelling techniques used to quantify rhizosphere carbon flow. Plant Soil 166, 55–62.
- Mordacq L, Mousseau M and Deleens E 1986 A ¹³C method of estimation of carbon allocation to roots in a young chestnut coppice. Plant Cell Environ. 9; 735–739.
- Schmidt O and Scrimgeour C M 2001. A simple urea leaf-feeding method for the production of ¹³C and ¹⁵N labeled plant material. Plant Soil 229; 197–202.
- Schnyder H 1992 Long-term steady-state labelling of wheat plants by use of natural ${}^{13}\text{CO}_2/{}^{12}\text{CO}_2$ mixtures in an open, rapidly turned-over system. Planta 187, 128–135.
- Svejcar T J, Boutton T W and Trent J D 1990 Assessment of carbon allocation with stable carbon isotope labeling. Agron. J. 82, 18– 21.
- Swinnen J, Van Veen J A and Merckx R 1994 ¹⁴C pulse-labelling of field grown spring wheat: An evaluation of its use in rhizosphere carbon budget estimations. Soil. Biol. Biochem. 26, 161–170.
- Thompson R B 1996 Pulse-labelling a cover crop with ¹³C to follow its decomposition in soil under field conditions. Plant Soil 180, 49–55.
- Warembourg F R and Kummerow 1991 Photosynthesis/translo cation studies in terrestrial ecosystems. *In* Carbon Isotope Techniques. Eds. D C Coleman and B Fry. pp 11–37. Academic Press, Inc, San Diego, USA.

Section editor: S. Recous